可能的改造方案有两个。
方案一:把2271线路就近改接到浙江电网(南湖变电所或嘉兴发电厂),架空线路的距离可减少一半,遭雷击等故障的可能性减小,线路本身的可靠性增加。投资也不大,原架空线路在南湖变电所和嘉兴发电厂之间穿过,大部分原线路还可利用,需要增加一台开关和相应的保护。从电源可靠性分析,原从上海电网引接安全电源,考虑到当时浙江北部电网相对比较弱,220kV变电所少,没有发电厂,安全电源需要独立可靠,所以从上海接。但近几年浙北电网大大加强了,秦山周围增加了220kV跃新变电所,嘉兴电厂、秦山二期、三期相继投入运行,550kV王店变电所也投入运行,浙北电网全网失电可能性几乎没有,所以可以从南湖变电所或嘉兴发电厂引接安全电源。这样,浙北电网非常可靠,新线路比原线路可靠,因此,整体可靠性就提高了。
方案二:可在方案一的基础上,从秦山三期接一路220 kV电源,实现两路电源并联运行,克服单电源的缺点。秦山三期距离我厂1 km,所以线路投资少,再增加两台开关和一套保护,投资也不大。此方案使一、二、三期安全电源相互备用,因为二、三期的启动/备用电源也是单电源结构(从220kV跃新变接),可大大增加一、二、三期安全电源可靠性。但此方案要在方案一的基础上才成立,因为上海、浙江电网220kV开环运行,不允许并列运行。如果我们接在上海电网,即使把三期的220 kV拉过来,但不能并联运行,就起不到增加可靠性的作用。
第二电源的可靠性分析和对策 我厂安全电源的第二电源为:高压厂变和6 kV工作段。正常运行时启/备变带6 kV公用段运行,高压厂变带6kV工作段运行,6 kV工作和公用段的联络开关断开,当启/备变失电时,6 kV工作和公用段的联络开关自动合上,由6kV工作段向公用段供电。对安全电源实现了从第一电源到第二电源的切换。高压厂变上级有3个电源(2424线路、2428线路、发电机),失电的可能性较小,变压器本身和6kV工作段配电装置也比较可靠,第二电源的最薄弱点在自动切换上。由于当时技术条件的限制,我厂采用的是慢速切换,切换时间2.2s,当启/备变失电时,低电压保护0.5 s跳开负荷,应急柴油机0.5s启动,对正常运行的电厂是一个很大的扰动,电源切换成功后,跳开的负荷需手动恢复。发生这种情况,设计上是不停堆的,但由于电厂瞬间受到很大的扰动,运行人员如果应对失误,还是有可能停堆的。1997年8月大台风时,发生此种情况,由于恶劣的天气,压空负荷和水厂负荷跳开后未能及时送电造成停堆。所以慢速切换是最大的不可靠点,即使切换成功,还会对电厂的安全性、经济性产生很大的影响。
目前厂用电源快速切换装置技术已成熟,在发电厂、变电所广泛运用,巴基斯坦恰希玛核电厂也采用了快速切换装置。所以要提高第二电源的可靠性,首先要把慢速切换改为快速切换,现在的快速切换装置可在几十毫秒内完成切换,如果发生启/备变失电,6kV公用段、安全段可在几十毫秒内恢复供电,低电压保护来不及动作,柴油机也来不及启动,切换过程对电厂没有任何扰动,可大大提高电厂的安全性和可靠性。
有了快速切换装置,我们就有更全面更好的改造方案。前面已分析了220kV秦石2271线路失电可能性高,改造要投资、要和各方协调,我厂暂时无计划。秦石2271线路失电后,由快速切换装置无扰动切换以弥补,但如果切换不成功,就得启动应急电源。能不能尽量少地启动切换?把第一和第二电源调换一下,就可解决此问题。正常运行6kV工作、公用段联络开关合上,启/备变6
kV侧开关断开热备用,高压厂变带电厂所有的负荷,这样高压厂变成为安全电源的第一电源,启/备变空充热备用作为第二电源;当高压厂变失电时,把安全电源(或全部电源)快速切换到启/备变运行;启/备变失电,对电厂无任何扰动,尽快恢复即可;高压厂变和启/备变同时失电再启动应急柴油发电机。由于高压厂变比启/备变可靠,所以自动切换的次数大大减少。此改造方案不需对一次设备进行投资,只在二次系统设备上进行改造,具有投资省、见效快的优点,是我们目前提高安全电源可靠性的首选方案。
应急柴油发电机的可靠性分析和改进 应急柴油发电机组作为最后的应急电源,当6 kV安全段失电后立即启动,在12 s内达到额定电压和额定频率,如果6kV安全段在失电4s内还未恢复供电,则柴油发电机根据程序自动合到安全母线上,自动带载。整个应急柴油发电机系统(包括自动带载程序)是一个机电仪一体的综合系统,影响它的可靠性因素太多。单从电气系统来分析,有发电机本体、启动控制回路、启动蓄电池、启动电机、励磁系统、出口开关及控制回路、继电保护系统等,任何一个环节出故障就影响其可靠性,要保证其高的可靠性,确实需要电厂各部门加倍努力。
(安全评价师)