发布时间:2010-01-14 共2页
4 粗骨料径影响
无论是道路混凝土,还是普通混凝土,其最薄弱环节,都处在骨料下缘,尤其是粗骨料的下缘。
粗骨料粒径越大,其下缘处的水膜层也越厚。因此,当道路混凝土采用裹砂石搅拌工艺时,随着粗骨料最大粒径增大,界面过渡层结构可得到更显著的改善。同时,还由于粗骨料粒径增大,其表面积相对减小,造壳所需水泥量也减少;另外,骨料粒径增大也有利于造壳砂石形成连续相的骨架。所以随着粗骨料最大粒径的增大,水泥裹砂石混凝土的增强效果更显著(列表2)
粗骨料粒径影响 表2
最大粒径 (mm) |
搅拌工艺 | 坍落度 (cm) |
抗压强度 (MPa) |
提高率 (%) |
10 5-10 |
普通法 裹砂石法 |
4.5 5.0 |
25.6 27.8 |
8.6 |
20 5-20 |
普通法 裹砂石法 |
4.5 4.5 |
25.1 26.1 |
4 |
40 5-40 |
普通法 裹砂石法 |
4.0 4.5 |
25.2 29.6 |
17.5 |
从试验结果看出,当粗骨料最大粒径分别为10mm、20mm、40mm时,以最大粒径40mm的裹砂石混凝土增强效果为最好。这对于道路混凝土采用粗骨料最大粒径40mm的拌合料是非常有利的。
5 生产应用
(1)裹砂石搅拌工艺为二次投料工艺,即造壳搅拌和匀化搅拌工艺。不同分次投料工艺的试验结果列表3.从表3可看出,各种分次投料搅拌工艺的7d强度增长率均高于28d强度增长率,其中裹砂石法的强度增长率最高。另外,从工艺角度考虑,净浆裹石法为三次投料,而裹砂石法为二次投料,工艺简便易行。
不同分次投料工艺的强度增长率 表3
种类 | R7(%) | R28(%) | 第一次 | 第二次 | 第三次 |
常规法 | 0 | 0 | 水 砂 石 水泥 | 0 | 0 |
净浆法 | 12.2 | 6.7 | 水1 水泥 | 水2 砂 | 石 水3 |
砂浆法 | 11.1 | 7.8 | 水1 砂 水泥 | 石 水2 | 0 |
裹砂法 | 14.1 | 8.8 | 水1 砂 | 水泥 | 石 水2 |
裹石法 | 12.1 | 9.5 | 水1 石 | 水泥 | 砂 水2 |
净浆裹石法 | 12.2 | 10.9 | 水1 水泥 | 水2 石 | 砂 水3 |
裹砂石法 | 14.0 | 12.0 | 水1 砂 石 | 水泥 水2 | 0 |
(2)裹砂石法搅拌工艺方案如下:
在此搅拌工艺方案中,下限为强制式搅拌机搅拌时间,上限为自落式搅拌机搅拌时 间。第一次投料为:砂 石 70%水(包括砂石含水量);第二次投料为:水泥 30%水;
(3)福建闽清市政建设工程公司采用裹砂石法进行了现场强度对比试验,其结果列于表4.
强度对比试验结果 表4
搅拌工艺 | 抗压强度(MPa) | 强度相对值 | ||
7d | 28d | 7d | 28d | |
常规法 | 21.2 | 30.1 | 100 | 100 |
裹砂石法 | 26.1 | 34.5 | 123.1 | 114.6 |
由表4可见,裹砂石法的强度增长值较高,R7为23.1%,R28为14.6%;因此,采用裹砂石法后,C30混凝土的水泥用量由360kg/m3降为324kg/m3,可节约水泥10%。
此外,由于裹砂石法拌制的混凝土具有较高的早期强度,可加快施工进度,如大庆油田扩建工程让湖路立交桥30m予应力钢筋混凝土T梁的施工过程中,原先需 7d才能达到85%设计强度,采用造壳任务,而且28d强度由原先技术仅用4d就可达到85%的设计强度,不仅提前9d完成了的42.3MPa提高到 46.9MPa.
6 结语
在所选定的试验条件下,各种分次投料搅拌工艺中,裹砂石法在不增加搅拌设备和生产管理人员,不延长搅拌时间的前提下,增强效果最好,而且投料次数少,适用性广(适用于坍落度<9cm的塑性和半干硬性混凝土=,操作简便,易于推广。此外,裹砂石法混凝土抗渗性、抗裂性、抗冻性及抗弯拉性均有明显的改善。
裹砂石法搅拌工艺实践证明,可提高强度10%~20%,在保证道路混凝土质量前提下,可节约水泥5%~10%。
提高水泥混凝土路面质量,出路在于不断采用混凝土路面施工新技术。而裹砂石法搅拌工艺是获得路面质量混凝土混合物的有效途径。
目前,洛阳震动机械厂生产了一种裹砂石法的专用机械(JDF350型混凝土搅拌机),该机有两个上料斗,一个装砂石,一个装水泥,全部搅拌过程按程序自动完成,消除了人为因素的影响。自1991年投放市场以来,受到施工单位好评。