4 钢管拱现场预拼
经过工厂加工制作、进到施工现场的钢管拱半成品组合单元主要有:单哑铃形2-φ900主拱管84分片、φ400腹杆(及斜腹杆)420根、φ500横撑158根、φ299横联撑杆225根以及隔板、拱脚连接板等。这些单元构件进场后应按照拼装顺序分类堆放,逐一进行现场预拼与安装。
4.1 预拼台座制作
现场预拼按卧式组拼方案施工。预拼台座平面布置是根据设计图纸进行坐标换算后的控制参数来进行施工放样的。主拱管预拼台座纵向可同时制作相邻两节段(2×12.0m标准安装节段)。横撑(X形撑)预拼台座布置一组,先制作横撑,再改制X形撑。台座为条凳式底座。在25 m长度范围内设置有5条横向条座。条座宽80 cm。12.0 m钢管端口支承处条座长12.5m,每节钢管中部条座长7.0 m。台座采用7.5号浆砌片石材料,表面用水泥浆抹平以便测量放样。台座埋入地面10~30cm深,要求地基密实、稳定。台座顶面高出地面50 cm,并呈水平。施工时,按制作需要预埋定位钢板(位置依测量放样而定,为500mm×600 mm×12 mm钢板)、胎架支承钢板以及备用锚环。
4.2 胎架制作
在预拼台座上制作稳固的刚性胎架。按施工大样尺寸并预留工作调节空间,用钢板(厚10~16 mm)、型钢(Ⅰ180~220、∠100~160)焊拼成预拼构件的水平支承杆、垂直定位立杆和稳定限位斜撑。用经纬仪和水准仪控制胎架的水平与垂直精度。
4.3 主拱管定位
采用经纬仪按换算坐标在台座上放出主拱管的对接口投影线。采用场地龙门吊机将主拱管2个分片吊入胎架。在留有余长的主拱管两端放出对接口环缝样线。通过调整定位,使2个分片的管轴线水平间距为设计坐标值,单个分片上下主管中心线所在平面与胎架水平底线垂直,对接口环缝样线与台座上的对接口投影线重合。精确定位后用限位撑杆焊接固定在胎架上,再用仪器复查一遍。当几何尺寸精度控制合格后,割除端口长度余量(长度的确定应考虑焊接影响),打好坡口并打磨光顺,保证对焊能顺利进行。
4.4 现场预拼焊接
将已制备好的接头支撑杆准确焊拼到主拱管端口附近,距对接口约30 cm。接头支撑杆组拼形式见图3,并具有足够的刚性,以保持主拱管端口的对接几何尺寸。腹杆焊接按从下到上、先直腹杆后斜腹杆的顺序组拼,焊接时采取对称交错、分段反向顺序。组拼过程中,严格监测钢管拱的组拼尺寸误差。
由于现场焊接仰焊难度较大,为保证焊缝质量,在完成整个节段的平焊与立焊后,利用龙门吊机将预拼节段整体翻身,再焊接另一面焊缝。在翻身前的施工中要注意按要求对仰焊缝作手工电焊打底,并先组拼焊好隔板,翻身过程中要轻柔、平缓,设置必要的支垫或拉绳,防止冲击和集中受力。翻身后对原仰焊进行平焊之前,抽样检查钢管拱截面的主要控制尺寸,预防变形。
预拼好的安装节段,起吊前要在地面焊接好各类吊装辅助构件,设置横联位置和测量控制标记,安装焊接检修通道。
4.5 相邻标准安装节段对接口地面处理
为了减少空中对焊精确对位的工作量和施工难度,预拼成型的安装节段必须作对接口的地面预接和必要的技术处理。由于钢管拱在制作的过程中会遇到各种因素的影响,主拱管的椭圆度误差客观存在,且两相邻节段接口的椭圆形态不一致。施工对接时,对接口钢板(管壁)相互错位现象普遍存在,错位值一般有1~5 mm、甚至可达到20 mm以上。为此,预拼现场每组台座上的两节钢管拱要在起吊前进行预接整圆,相互对应着设置夹具和记号,使每道对接口的4根钢管、8个接口端面钢管圆环的对接错位误差限制在±1mm内。起吊时,相邻节段解体后先吊走安装节段,再将后安装节段移位到已经吊走节段的原胎架位置上,再进行新一节段的预拼。这里,随着节段的推进,主拱管节段尺寸亦在随之变化,胎架上限位撑杆的位置亦需作相应的调整。
4.6 空中对焊
本桥钢管拱采取分节段焊接成拱。这对钢管拱的加工制作、现场预拼和空中对焊以及缆索吊装-扣定系统都提出了很高的技术要求,增大了整个安装工程的难度,同时大大延长了安装工期。钢管拱安装节段经缆索吊装就位后用预设接口定位钢筋(或钢板)进行初定位,根据经纬仪和水准仪(或全站仪)的线形控制指令,利用缆索吊机、横向稳定风缆和手拉葫芦对它进行竖、横、纵及旋转四维调整,使对接口两两吻合。对失圆误差和中心距微小误差,可利用钢质夹具空中整形,必要时可以采用千斤顶配合。对变形或错位较大,超出规定要求的接头,应采用钢板衬板(或预制备用的钢管环形箍)进行加强处理,确保成拱质量。
4.7 横撑(X形撑)现场预拼
横撑(X形撑)进场单元构件利用场地龙门吊机组拼焊制成安装桁式单片,利用缆索吊机安装。其现场预拼施工流程为:横撑(X形撑)通用台座和胎架制作、放样划线、弦管吊运定位、撑管组拼定位、焊接、检测、起吊外移、下一单元预拼。
5 钢管拱预制质量控制
5.1 焊缝质量
焊缝质量符合国标二级质量标准的要求[3]。
5.2 几何尺寸允许误差
(1) 钢管拱轴线:2.0 m基本管节取直线,起弧方向允许偏差1 mm,起弧反向允许偏差0 mm;12.0 m单哑铃形管节允许偏差±2 mm;12.0 m标准安装节段允许偏差±3 mm;成桥后拱轴线允许偏差±10 mm或≤L/15 000。
(2) 横截面外形:钢管椭圆度±3 mm或≤3/1 000;整体长和宽允许偏差- 0 mm、+5mm;四肢主拱管两条中心对角线长度允许偏差±3 mm。
(3) 长度:2.0 m基本管节为±2 mm;12.0 m单哑铃形管节为±5 mm;安装成拱的各接口桩号(即拱跨纵坐标)允许偏差±20 mm(限制安装节段的误差累积)。
(4) 断面安装垂直度:单条拱肋断面安装垂直度±3 mm。
(5) 缀板焊接位置:±2 mm。
(6) 腹杆、斜杆组装:杆中线(管中线)与主拱管竖直对称面之间的偏离距离为±2 mm;杆与主拱管连接的沿弧长方向的位置为±5 mm。
5.3 防腐处理
防腐处理按设计要求和有关规范[3][4]办理。
6 施工体会
秭归龙潭河大桥钢管拱加工及现场预拼施工经检查验收均符合设计和规范要求。通过该桥实践,我们有以下几点体会:
(1) 现行规范对钢结构的加工制作要求,针对工厂内施工和外场螺栓联结结构的施工是适当的,针对现场制作和钢管拱桥分节段空中焊接成拱则要求甚高,难以达到,需采取一定的特殊措施方能满足。空中直接对焊成拱方案的合理性值得探讨。因此,在施工精度的现场及空中控制客观难度与施工误差对拱桥承载能力的影响方面,建议设计部门予以充分考虑。
(2) 秭归桥址所在山区谷口,四季风力强劲,每天下午和晚上风力可达5~7级。其气候特征带有十分突出的特殊性,雨天、雾天、大风天和夜晚占去该桥大量空中焊接时间(占总工期的40%~50%),严重影响施工。若只计算钢管拱现场组拼及安装纯占用时间,一般为3 d预拼一节段、4 d安装一节段。该桥实际施工4~5 d预拼一节段、5~10 d安装一节段。
(3) 钢管拱制作与安装工程依其施工和质量要求,若参照现有的参考定额,其预算造价明显偏低,无法满足实际资金需求。
综上所述,进一步收集整理该类型桥梁的施工经验,分析探讨其科学合理的施工经济技术指标,这对指导今后的设计、施工和成本管理都将具有重要意义。
作者简介: 何雨微(1969-),男,工程师,1991年毕业于长沙交通学院公路与城市道路专业,工学学士。
作者单位:(湖北省公路建设总公司,湖北 武汉 430052)
参考文献:
[1] JCJ01-89,钢管混凝土结构设计与施工规程[S].
[2] CECS 28:90,钢管混凝土结构设计与施工规程[S].
[3] GBJ205-83,钢结构工程施工及验收规范[S].
[4] JTJ041-89,公路桥涵施工技术规范[S].
[5] JTJ071-94,公路工程质量检验评定标准[S].
[6] GBJ17-88,钢结构设计规范[S].
[7] 陈宝春. 钢管混凝土拱桥发展综述[J].桥梁建设,1997
(2):8~13.