浅谈如何提高混凝土的抗腐蚀性

发布时间:2010-01-14 共2页

    一、概述

   1.自然界中使用的混凝土,由于受环境条件的影响,可能引起混凝土性能的变化,我国的西南、西北和沿海的许多地区,地下水和土壤中含有大量硫酸盐、碳酸盐、镁盐和氯化物。由于混凝土在这种环境中使用遭受这些有害离子的侵蚀,引起硬化后水泥成分的变化,使其强度降低而遭破坏。如干湿循环、高温、低温的交替,都能使多孔结构的混凝土产生破坏,甚至导致完全崩溃。

    2.我们施工的新建铁路洛湛线广西梧州地区段地处我国的西南,沿线所经地段属珠江水系,主要有桂江、西江、浔江、大平河、六堡河、山心河等,区内河流流量较大,且雨季降水量大,暴雨持续时间长,易引起洪涝灾害。铁路工程的桥梁、隧道、涵洞、路基附属工程等混凝土结构物均容易受到地下水、地表水的浸泡,地下水主要为基岩裂隙水,含水岩组主要为石英砂岩、砂岩、石灰岩、花岗岩等。根据水质化验报告,该地区绝大部分地段地下水、地表水均具有弱硫酸型酸性侵蚀和中等溶出型侵蚀(含碳酸盐侵蚀),混凝土等圬工需采取相应的抗侵蚀性措施。该地区属亚热带季风湿润气候区,冬无严寒,夏季较热,四季较分明,1月最冷,7月最热;雨量充沛,降雨量主要集中在3~8月,年平均降雨量为1287.5~1667.4mm.多年平均气温19~21.1℃,极端最高气温39.5℃,极端最低气温-4.0℃。在这种环境中使用的混凝土很容易遭受这些不利因素的影响,使混凝土的强度降低而破坏,甚至完全崩溃。

    3.为了防止混凝土遭受硫酸盐侵蚀我们采取了选择C3A含量较低、水泥标号较高的水泥、严格控制骨料的级配、尽量掺入磨细粉料、在混凝土中掺入了对混凝土有防腐阻锈作用的RMA系列抗腐蚀剂、同时在混凝土中掺入高效减水剂、加强混凝土养护等措施。

    二、混凝土受侵蚀破坏机理

    导致混凝土的破坏主要有物理性侵蚀和化学性侵蚀两个方面,以硫酸盐为例说明如下:

    1.硫酸盐结晶的破坏。具有一定硫酸盐的环境水,在混凝土毛细管的作用下,被吸入混凝土体中,而暴露在大气中的混凝土,由于毛细管的作用,将传递水分蒸发。溶解在水中的矿物质,经浓缩而析出,从而残留在混凝土的表面和内部,呈现出白迹、白霜,使混凝土遭受硫酸盐结晶的膨胀压力,促使混凝土从表层开始破坏,其破坏首先发生在水位变化区,干湿交替地带以及单侧受水头压力的砼薄壁结构。在返潮段遭受到侵蚀,地面上某些地段有霜状盐的结晶,有的地区呈现豆腐渣状,使建筑物的混凝土强度降低,最后导致完全破坏。

    2、环境水对普通硅酸盐水泥的化学腐蚀。硫酸盐侵蚀:某些地区的地下水和地表水,含有硫酸盐,如硫酸钠(Na2SO4)、硫酸钙(CaSO4)、硫酸镁(MgSO4)等,环境水中的硫酸钠和普通硅酸盐水泥石中的碱性固态游离石灰质及水化铝酸钙发生化学反应,生成石膏和硫铝酸钙,产生体积膨胀,使混凝土破坏。硫酸钠和氢氧化钙的反应式:Ca(OH)2+ Na2SO4.10H2O→CaSO4.2H2O+2NaOH+8 H2O这种反应在流动的硫酸盐水溶液里进行,可以一直进行下去,直至水泥中的Ca(OH)2完全被反应完。如果NaOH被积聚,反应达到平衡,只有一部分CaSO4沉定成石膏。水泥石中的氢氧化钙转变为石膏(CaSO4.2H2O),体积增加原来的两倍,产生膨胀。硫酸钠和水化铝酸钙的反应式:2(3CaO.Al2O3.12H2O)+3(Na2SO4.10H2O)→3CaO.Al2O3.3CaSO4.32H2O+2Al(OH)3+6NaOH+16H2O水化铝酸钙变成硫铝酸钙时,体积增大。环境中的硫酸镁(MgSO4.7H2O),除了能侵害水化铝酸钙和氢氧化钙之外,还能和水化硅酸钙反应,其反应式:3CaO.SiO3.H2O + MgSO4.7H2O → CaSO4.2H2O+ Mg (OH)2+ SiO2这一反应,是由于氢氧化镁的溶解度很低,造成饱和溶液PH值也低。氢氧化镁的溶解能度每升仅为0.01克,它的饱和溶液PH值约为10.5.这个数值低,致使水化硅酸钙有硫酸镁溶液存在的条件下,不断分解出石灰。所以硫酸镁较其他的硫酸盐,具有更大的侵蚀性。硫酸盐的侵蚀的速度,随其溶液浓度的增加而增加,硫酸盐浓度以[SO42-]来表示。当环境水[SO42-]大于500mg/l时,环境水就有硫酸盐侵蚀。在1500~2500mg/l时为中等侵蚀。[SO42-]在2500mg/以上时为强侵蚀。混凝土遭受硫酸盐侵蚀的特征是表面发白,菱角破坏,接着裂缝展开并剥落,使混凝土破碎和松散而破坏。其它的遇水后易产生负离子的盐类如碳酸盐[HCO3-]、氯盐[Cl-]对普通硅酸盐水泥的破坏机理和硫酸盐是类似的,不再重复说明。

百分百考试网 考试宝典

立即免费试用